Abstract

ABSTRACT The present paper reports basic data on DNA content, protein content, and protein synthesis in Triturus pyrrhogaster embryos during development from cleavage to the hatching stage. Except for measurements of DNA and total protein contents, embryos were labeled with sodium carbonate-14C for 10 h and fractionated into embryonic cell components, i.e. cytoplasmic mass, yolk and pigment granules, and nuclei, in a discontinuous density gradient of sucrose. The protein content and the radioactivity incorporated into protein were measured in each fraction. Those fractions combining protein soluble in buffer at pH 8·3 and in 0·25 N-HCl were further studied with polyacrylamide gel electrophoresis. In the newt embryo, four stages of active DNA increase were observed when cultured at constant temperature; they were gastrula, neurula, late tail-bud, and before-hatching stages. Total protein per embryo decreased from 3 to 2 mg during the development studied. The content of cytoplasmic soluble protein per embryo was low and constant throughout development. Synthesis of the fraction was observed at the earliest stage of development studied though the rate was not high and specific activity of the soluble protein increased during development. Qualitative changes in the newly synthesized protein were observed. With the yolk fraction, synthesis of protein, other than from probable contamination with the cytoplasmic fraction, was not detected and a detailed description was omitted. Changes were observed at two stages of development in the synthesis of nuclear protein soluble in buffer at pH 8·3, the first at gastrulation and the second at late tail-bud stage. The change at gastrulation seemed to be the start of syntheses of the nuclear soluble proteins, while quantitative enhancement rather than qualitative change was noticed at late tail-bud stage. Most of the nuclear protein soluble in 0·25 N-HCl was histone. The histone content increased in accordance with increase in the DNA content and the rate of DNA accumulation was accompanied by proportionate incorporation of radioactivity into histone. Among histone fractions, unique behaviour of the very lysine-rich histone was observed. The availability of [14C]sodium carbonate in rough estimations of protein synthesis in embryos and significance of the data obtained have been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call