Abstract

Severe acute respiratory tract infections (SARIs) has been well described in South Africa with seasonal patterns described for influenza and respiratory syncytial virus (RSV), while others occur year-round (rhinovirus and adenovirus). This prospective syndromic hospital-based surveillance study describes the prevalence and impact of public interventions on the seasonality of other respiratory pathogens during the coronavirus disease-19 (COVID-19) pandemic. This occurred from August 2018 to April 2022, with 2595 patients who met the SARS case definition and 442 controls, from three sentinel urban and rural hospital sites in South Africa. Naso/oro-pharyngeal (NP/OP) swabs were tested using the FastTrack Diagnostics® Respiratory pathogens 33 (RUO) kit. Descriptive statistics, odds ratios, and univariate/multivariate analyses were used. Rhinovirus (14.80%, 228/1540) and Streptococcus pneumoniae (28.50%, 439/1540) were most frequently detected in NP/OP swabs and in children <1 years old (35%, 648/1876). Among others, pathogens associated with SARI cases causing disease were influenza A&B, HRV, RSV, hCoV 229e, Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pneumoniae. Pre-COVID-19, seasonal trends of these pathogens correlated with previous years, with RSV and influenza A seasons only resuming after the national lockdown (2021). It is evident that stringent lockdown conditions have severe impacts on the prevalence of respiratory tract infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.