Abstract

We explored the hypothesis that spawning ground locations of North Sea plaice reflect the locations of nursery grounds using drift scenarios based on a baroclinic, shallow-water circulation model (HAMSOM). The transport of pelagic eggs and larvae was simulated each year from 1975 to 2006 using in situ forcing, temperature-dependent development and stage-specific behaviour of eggs and larvae. This long-term simulation period also allowed us to explore climate effects. A release position was considered a potential and suitable spawning site if larvae from that area reached coastal nurseries after the onset of metamorphosis. In general, larvae were transported in an anti-clockwise direction and settled in nurseries that were relatively close to the release positions. Spawning locations that were offshore were poorly connected to nursery grounds while those closer to the shore had higher connectivity. Simulated suitable spawning locations broadly agreed with the main centres of egg production (English Channel, Southern Bight, German Bight), except for the known spawning grounds south of Dogger Bank. Over the 31-year simulation period, positive and negative trends in transport success were found for the western and eastern parts of the North Sea, respectively. Changes in the west (Flamborough Head) were mainly due to changes in water circulation patterns whereas those in the east (northern German Bight) were induced by changes in both currents and water temperature. The implications of these findings, and the significant correlation between changes in drift and recruitment, suggest that climate-driven changes in the suitability of nursery grounds will directly affect the distribution and productivity of plaice in the North Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call