Abstract

The pore size distribution is quite significant for determining the transport capacity of heat and moisture in sludge during the drying process. It is crucial to investigate the transformation of the pore size in sludge under sonication. In this paper, the microstructures of pores inside sludge before and after ultrasonic treatment with various ultrasonic conditions were observed using a microscope. Fractal geometry and image analysis were combined to quantitatively identify the evolution of pore size in sludge undergoing various acoustic energy densities and treatment times. The surface fractal dimension (df) was applied to characterize the pore size distribution of sludge. The results confirmed that sonication has a positive influence on the characteristics of pore structure inside the sludge and that the average pore size increases with increasing ultrasonic energy level, as determined by both acoustic energy density and treatment time. The df appropriately characterizes and quantifies the evolution of the pore size distribution of sludge under various ultrasonic conditions. This work is quite valuable for further investigating and evaluating moisture removal in the sludge drying process assisted by ultrasonic treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call