Abstract

The effects of collisions on the composition of the plasma passing through the first vacuum stage of an inductively coupled plasma mass spectrometer were monitored in three sets of experiments. Rates of collisional quenching of an excited state in the neutral calcium atom were estimated from changes in experimental fluorescence lifetimes. Intensities from collisionally-assisted fluorescence provided evidence of energy transfer between excited states. Changes in analyte number density along the axis of the supersonic expansion in the first vacuum stage provided evidence that ion-electron recombination occurs to a significant extent during the expansion. Together, the experiments create a picture of the first vacuum stage in which collisions play an important role in shaping the composition of the plasma that is ultimately delivered to the mass analyzer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.