Abstract

Projected global climate change is a potential threat to nutrient utilization in agroecosystems. However, the combined effects of elevated [CO2] and canopy warming on plant nutrient concentrations and translocations are not well understood. Here we conducted an open-air field experiment to investigate the impact of factorial elevated [CO2] (up to 500 μmol mol-1) and canopy air warming (+2°C) on nutrient (N, P, and K) status during the wheat growing season in a winter wheat field. Compared to ambient conditions, soil nutrient status was generally unchanged under elevated [CO2] and canopy warming. In contrast, elevated [CO2] decreased K concentrations by 11.0% and 11.5% in plant shoot and root, respectively, but had no impact on N or P concentration. Canopy warming increased shoot N, P and K concentrations by 8.9%, 7.5% and 15.0%, but decreased root N, P, and K concentrations by 12.3%, 9.0% and 31.6%, respectively. Accordingly, canopy warming rather than elevated [CO2] increased respectively N, P and K transfer coefficients (defined as the ratio of nutrient concentrations in the shoot to root) by 22.2%, 27.9% and 84.3%, which illustrated that canopy warming played a more important role in nutrient translocation from belowground to aboveground than elevated [CO2]. These results suggested that the response of nutrient dynamics was more sensitive in plants than in soil under climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call