Abstract

Corn stover is a potential feedstock for biofuel production. This work investigated physical and chemical changes in plant cell-wall structure of corn stover due to hot compressed water (HCW) pretreatment at 170-190 °C in a tube reactor. Chemical composition analysis showed the soluble hemicellulose content increased with pretreatment temperature, whereas the hemicellulose content decreased from 29 to 7 % in pretreated solids. Scanning electron microscopy revealed the parenchyma-type second cell-wall structure of the plant was almost completely removed at 185 °C, and the sclerenchyma-type second cell wall was greatly damaged upon addition of 5 mmol/L ammonium sulfate during HCW pretreatment. These changes favored accessibility for enzymatic action. Enzyme saccharification of solids by optimized pretreatment with HCW at 185 °C resulted in an enzymatic hydrolysis yield of 87 %, an enhancement of 77 % compared to the yield from untreated corn stover.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call