Abstract

Physiological, biochemical, and growth parameters of sorghum (Sorghum bicolor (L.) Moench) plants grown in the presence of phenantrene (10 and 100 mg/kg soil) were examined. Activities of intracellular tyrosinases, peroxidases, and laccase-like oxidases were analyzed in 1 and 2 months after planting. The tyrosinase activity in root and leaf tissues correlated positively throughout the experiment with the level of soil pollution. The oxidase activity was apparent only in the first month; it also correlated positively with the concentration of phenanthrene. Intracellular peroxidases exhibited the highest activity; positive correlation of this activity with the level of soil contamination was observed in the first period of observations. The soil pollutant had a negative impact on growth characteristics (germination capacity, survival rate, and accumulation of plant biomass). In addition, soil contamination with phenanthrene reduced the total content of photosynthetic pigments and changed their ratio. The maximum extent of phenanthrene elimination in soil was found to occur in the root zone of sorghum plants at high-level contamination, which indicates a significant contribution of plants to the decomposition (binding) of this xenobiotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call