Abstract

The present experiments were designed to investigate whether alterations of peripheral nervous system activity may be produced in male Wistar rats by prenatal exposure (from day 0 to day 20 of pregnancy) to relatively low levels of CO (75 and 150 ppm). The voltage clamp analysis of ionic currents recorded from sciatic nerve fibres showed that prenatal exposure to CO produced modifications of sodium current properties. In particular, in 40-day-old rats exposed to CO (75 and 150 ppm) during gestation, the inactivation kinetics of transient sodium current were significantly slowed. Analysis of the potential dependence of steady-state Na inactivation, h infinity (V), showed that the percentage of the maximum number of activable Na channels at the normal resting potential (-80 mV) was increased to approximately 85% in CO-exposed rats. Moreover, the voltage-current relationship showed a negative shift of sodium equilibrium potential in CO treated animals. In 270-day-old CO-exposed rats, parameters of sodium inactivation were not significantly modified; the reversal potential was still lower with respect to controls. The results indicate that prenatal exposure to mild CO concentrations produces reversible changes in sodium inactivation kinetics and on irreversible change in sodium equilibrium potential. These alterations could reflect CO influence on the rate of ion channel development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call