Abstract
The dynamic process of memory consolidation involves a reorganization of brain regions that support a memory trace over time, but exactly how the network reorganizes as the memory changes remains unclear. We present novel converging evidence from studies of animals (rats) and humans for the time-dependent reorganization and transformation of different types of memory as measured both by behavior and brain activation. We find that context-specific memories in rats, and naturalistic episodic memories in humans, lose precision over time and activity in the hippocampus decreases. If, however, the retrieved memories retain contextual or perceptual detail, the hippocampus is engaged similarly at recent and remote timepoints. As the interval between the timepoint increases, the medial prefrontal cortex is engaged increasingly during memory retrieval, regardless of the context or the amount of retrieved detail. Moreover, these hippocampal-frontal shifts are accompanied by corresponding changes in a network of cortical structures mediating perceptually-detailed as well as less precise, schematic memories. These findings provide cross-species evidence for the crucial interplay between hippocampus and neocortex that reflects changes in memory representation over time and underlies systems consolidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.