Abstract

In Parkinson's disease (PD), the luminance pattern electroretinogram (PERG) is reported to be abnormal, indicating dysfunction of retinal ganglion cells (RGCs). To determine the vulnerability of different subpopulations of RGCs in PD patients, the authors recorded the PERG to stimuli of chromatic (red-green [R-G] and blue-yellow [B-Y]) and achromatic (yellow-black [Y-Bk]) contrast, known to emphasize the contribution of parvocellular, koniocellular, and magnocellular RGCs, respectively. Subjects were early PD patients (n = 12; mean age, 60.1 +/- 8.3 years; range, 46 to 74 years) not undergoing treatment with levodopa and age-sex-matched controls (n = 12). Pattern electroretinograms were recorded monocularly in response to equiluminant R-G, B-Y, and Y-Bk horizontal gratings of 0.3 c/deg and 90% contrast, reversed at 1Hz, and presented at a viewing distance of 24 cm (59.2 x 59 degree field). In PD patients, the PERG amplitude was significantly reduced (by 40 to 50% on average) for both chromatic and luminance stimuli. Pattern electroretinogram latency was significantly delayed (by about 15 ms) for B-Y stimuli only. Data indicate that, in addition to achromatic PERGs, chromatic PERGs are altered in PD before levodopa therapy. Overall, chromatic PERGs to B-Y equiluminant stimuli exhibited the largest changes. Data are consistent with previous findings in PD, showing that visual evoked potentials (VEP) to B-Y chromatic stimuli are more delayed than VEPs to R-G and achromatic stimuli. The results suggest that the koniocellular subpopulation of RGCs may be particularly vulnerable in early stages of Parkinson's disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call