Abstract

BackgroundArthritis-induced joint contracture is caused by arthrogenic and myogenic factors. The arthrogenic factor, localized within the joint, is naturally accepted as the cause of contracture. However, the detailed mechanisms underlying arthritis-induced myogenic contracture are largely unknown. We aimed to elucidate the mechanisms of arthritis-induced myogenic contracture by examining the muscle mechanical properties. MethodsKnee arthritis was induced in rats by injecting complete Freund's adjuvant into the right knees, while the untreated contralateral knees were used as controls. After one or four weeks of injection, passive stiffness, length, and collagen content of the semitendinosus muscles were assessed, along with passive knee extension range of motion. FindingsAfter one week of injection, flexion contracture formation was confirmed by a decreased range of motion. Range of motion restriction was partially relieved by myotomy, but still remained even after myotomy, indicating the contribution of both myogenic and arthrogenic factors to contracture formation. After one week of injection, the stiffness of the semitendinosus muscle was significantly higher in the injected side than in the contralateral side. After four weeks of injection, the stiffness of the semitendinosus muscle in the injected side returned to levels comparable to the contralateral side, parallel to partial improvement of flexion contracture. Muscle length and collagen content did not change due to arthritis at both time points. InterpretationOur results suggest that increased muscle stiffness, rather than muscle shortening, contributes to myogenic contracture detected during the early stage of arthritis. The increased muscle stiffness cannot be explained by excess collagen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.