Abstract

Glycosylation is an effective method to modify protein. However, there is a lack of research on the property changes of glycosylated protein during storage. In the present study, the changes in the physicochemical, functional, and structural properties of xylo-oligosaccharide (XOS) glycosylated egg white powder (EWP) (XOS-EWP conjugates) prepared with different glycosylation conditions (XOS/EWP ratio and reaction time) were investigated when stored at 25 °C and 60% relative humidity. In the 12 weeks of storage, the degree of grafting, browning, and the formation of Maillard reaction products of XOS-EWP conjugates increased. The increase in XOS/EWP ratio and reaction time led to an increase in protein aggregation, though a decrease in solubility, due to increased degree of glycosylation and structural changes. Furthermore, improved gel hardness of XOS-EWP conjugates deteriorated, while improved emulsification ability was kept stable during storage. For the sample with a lower XOS/EWP ratio and reaction time, the gel hardness and emulsifying properties underwent little or no deterioration even improving during storage. The results could be attributed to the limited degree of glycosylation, further unfolding of the protein structure, increased surface hydrophobicity of protein, and improved thermal characteristics. During storage, the Maillard reaction would continue to occur in the glycosylated EWP, further affecting the performance of modified EWP. Modified EWP prepared under different glycosylation conditions performed differently during storage. Modified EWP with a larger XOS/EWP ratio and reaction time meant it was harder to maintain good performance. Modified EWP with a smaller XOS/EWP ratio and reaction time changed significantly to better performances. © 2022 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.