Abstract

To investigate the combined effect of temperature and light availability on organic matter production and degradation during a winter/spring phytoplankton bloom in Kiel Bight, we conducted a mesocosm study applying two temperature regimes, ambient (T + 0) and plus 6°C (T + 6) and three irradiance levels. Rising temperature accelerated the onset of the phytoplankton bloom, while light intensity played only a minor role for the timing and bloom development. Maximum build-up of chlorophyll a and particulate organic carbon were ∼20% lower at T + 6 compared with T + 0, probably caused by a combination of elevated heterotrophic processes and enhanced sedimentation during the bloom. The latter is supported by increased TEP concentrations at T + 6 (TEP/POC 0.18 mol C/mol C) compared with T + 0 (0.11 mol C/mol C) during bloom conditions, which may have promoted cell aggregation and sinking. Dissolved organic carbon concentrations increased more rapidly at elevated temperature. For a warmer future ocean, we can hence expect two counteracting mechanisms controlling organic matter flow during phytoplankton blooms: (1) enhanced processing of organic matter via the microbial loop resulting in a faster recycling and (2) depending on the dominating phytoplankton species, enhanced TEP formation resulting in increased particle aggregation and thus export of carbon and nutrients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call