Abstract

Abstract A parameterization of turbulent mixing from unbroken surface waves is included in a 16-yr simulation within a high-resolution ocean circulation model (MOM5). This “surface wave mixing” (SWM) derives from the wave orbital motion and is parameterized as an additional term in a k-epsilon model. We show that SWM leads to significant changes in sea surface temperatures but smaller changes in ocean heat content, and show the extent to which these changes can reduce pre-existing model biases with respect to observed data. Specifically, SWM leads to a widespread improvement in sea surface temperature in both hemispheres in summer and winter, while for ocean heat content the improvements are less clear. In addition, we show that introducing SWM can lead to an accumulation of wave-induced ocean heat content between years. While it has been well established that secular positive trends exist in global wave heights, we find that such trends are relatively unimportant in driving the accumulation of wave-induced ocean heat content. Rather, in response to the new source of mixing, the simulated ocean climate evolves toward a new equilibrium with greater total ocean heat content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call