Abstract
The interface between biochar and soil differs from both the bulk soil and the biochar itself, and has been termed the “charosphere”. However, a complete definition of the charosphere, including aspects of size, properties, functional reach and effects on soil processes, is still required. In this study, the distributions of functional genes related to the soil N cycle within the charosphere were investigated over a multi-sectional gradient. We found that concentrations of dissolved organic carbon (DOC), available phosphorus and exchangeable cations (Ca2+, Mg2+, K+) increased with proximity to the biochar surface (termed the ‘near charosphere’). Similarly, the abundance of bacterial amoA was greater in the near charosphere, while archaeal amoA abundance was relatively homogenous. This taxonomic asymmetry resulted in a shift in the predominant ammonia-oxidizers from ammonia-oxidizing bacteria (AOB) to ammonia-oxidizing archaea (AOA) in the far charosphere. This was associated with other factors such as decreasing pH and carbon availability with increasing distance from the biochar. Moreover, the ratio of nosZ/(nirS + nirK) genes also showed functionally asymmetry in the charosphere: increasing with increasing distance from the biochar. This is the first study to map spatial distributions of a set functional genes related to soil N cycling in the soil around biochar. This exploration into the underlying heterogeneity of biochar-affected mechanisms of N transformation provides new insight into the functional geometry of the charosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.