Abstract

RNA binding proteins are a diverse class of proteins that regulate all aspects of RNA metabolism. Accumulating studies indicate that heterogeneous nuclear ribonucleoproteins are associated with cellular adaptations in response to drugs of abuse. We recently mapped and validated heterogeneous nuclear ribonucleoprotein H1 (Hnrnph1) as a quantitative trait gene underlying differential behavioral sensitivity to methamphetamine. The molecular mechanisms by which hnRNP H1 alters methamphetamine behaviors are unknown but could involve pre- and/or post-synaptic changes in protein localization and function. Methamphetamine initiates post-synaptic D1 dopamine receptor signaling indirectly by binding to pre-synaptic dopamine transporters and vesicular monoamine transporters of midbrain dopaminergic neurons which triggers reverse transport and accumulation of dopamine at the synapse. Here, we examined changes in neuronal localization of hnRNP H in primary rat cortical neurons that express dopamine receptors that can be modulated by the D1 or D2 dopamine receptor agonists SKF38393 and (-)-Quinpirole HCl, respectively. Basal immunostaining of hnRNP H was localized primarily to the nucleus. D1 dopamine receptor activation induced an increase in hnRNP H nuclear immunostaining as detected by immunocytochemistry with a C-domain directed antibody containing epitope near the glycine-rich domain but not with an N-domain specific antibody. Although there was no change in hnRNP H protein in the nucleus or cytoplasm, there was a decrease in Hnrnph1 transcript following D1 receptor stimulation. Taken together, these results suggest that D1 receptor activation increases availability of the hnRNP H C-terminal epitope, which could potentially reflect changes in protein-protein interactions. Thus, D1 receptor signaling could represent a key molecular post-synaptic event linking Hnrnph1 polymorphisms to drug-induced behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.