Abstract

Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community.

Highlights

  • Bioenergy derived from cellulosic ethanol is a potential sustainable alternative to fossil fuel-based energy, since the energy from green plants is renewable and largely carbon neutral in comparison to fossil fuel combustion

  • The nitrification rates under these crops were analyzed in the second year by estimating the accumulation of the nitrate in buried soil bags, and linear regression revealed that the nitrification rates were significantly related to the quantities of archaeal ammonia monooxygenase asubunit (amoA) genes (R2 = 0.61, P = 0.03, n = 12), but not to the quantities of bacterial amoA genes (Fig. 2)

  • We found that traditional row-crop agriculture of maize has a larger impact on the soil N-cycling community than any of the perennial bioenergy feedstock crops (Figs. 1, S2), while the perennial crops were associated with overall community shifts in the phyla Planctomyces, Firmicutes, and Actinobacteria (Fig. 5)

Read more

Summary

Introduction

Bioenergy derived from cellulosic ethanol is a potential sustainable alternative to fossil fuel-based energy, since the energy from green plants is renewable and largely carbon neutral in comparison to fossil fuel combustion. Perennial grasses, such as switchgrass (Panicum virgatum) and Miscanthus6giganteus, with large annual biomass production potential, are proposed as biofuel feedstocks that can maximize ethanol production without adversely affecting the market for food crops (e.g. maize). Differences in management techniques between traditional row-crop agriculture and perennial biomass feedstocks represent different soil disturbance regimes, altered water use, differing rates of fertilizer application, etc., and these should have a direct impact on soil microbial dynamics, subsequently influencing the terrestrial biogeochemical cycles. We predict that the cultivation of high nitrogen-use efficiency perennial grasses will result in altered nitrogentransforming microbial communities in comparison to those found under N-fertilized maize

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.