Abstract
This study investigated the changes in muscle coordination associated to power output decrease during a 30-s isokinetic (120rpm) cycling sprint. Modifications in EMG amplitude and onset/offset were investigated from eight muscles [gluteus maximus (EMGGMAX), vastus lateralis and medialis obliquus (EMGVAS), medial and lateral gastrocnemius (EMGGAS), rectus femoris (EMGRF), biceps femoris and semitendinosus (EMGHAM)]. Changes in co-activation of four muscle pairs (CAIGMAX/GAS, CAIVAS/GAS, CAIVAS/HAM and CAIGMAX/RF) were also calculated. Substantial power reduction (60±6%) was accompanied by a decrease in EMG amplitude for all muscles other than HAM, with the greatest deficit identified for EMGRF (31±16%) and EMGGAS (20±14%). GASonset, HAMonset and GMAXonset shifted later in the pedalling cycle and the EMG offsets of all muscles (except GASoffset) shifted earlier as the sprint progressed (P<0.05). At the end of the sprint, CAIVAS/GAS and CAIGMAX/GAS were reduced by 48±10% and 43±12%, respectively. Our results show that substantial power reduction during fatiguing sprint cycling is accompanied by marked reductions in the EMG activity of bi-articular GAS and RF and co-activation level between GAS and main power producer muscles (GMAX and VAS). The observed changes in RF and GAS EMG activity are likely to result in a redistribution of the joint powers and alterations in the orientation of the pedal forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.