Abstract

During development the Australian fur seal transitions from a terrestrial, maternally dependent pup to an adult marine predator. Adult seals have adaptations that allow them to voluntarily dive at depth for long periods, including increased bradycardic control, increased myoglobin levels and haematocrit. To establish whether the profile of skeletal muscle also changes in line with the development of diving ability, biopsy samples were collected from the trapezius muscle of pups, juveniles and adults. The proportions of different fibre types and their oxidative capacity were determined. Only oxidative fibre types (Type I and IIa) were identified, with a significant change in proportions from pup to adult. There was no change in oxidative capacity of Type I and IIa fibres between pups and juveniles but there was a two-fold increase between juveniles and adults. Myoglobin expression increased between pups and juveniles, suggesting improved oxygen delivery, but with no increase in oxidative capacity, oxygen utilisation within the muscle may still be limited. Adult muscle had the highest oxidative capacity, suggesting that fibres are able to effectively utilise available oxygen during prolonged dives. Elevated levels of total creatine in the muscles of juveniles may act as an energy buffer when fibres are transitioning from a fast to slow fibre type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.