Abstract

ObjectiveMu and beta EEG oscillations show typical desynchronization patterns during movement. The aim of the current study was to assess whether in sub-acute stroke patients the magnitude of movement-related desynchronization reflects the extent of residual motor ability in the paretic upper limb. MethodsEEG and EMG data were recorded from 14 first-event stroke patients during repeated wrist extension movements of the paretic upper limb. Residual motor ability was assessed by the Fugl Meyer and Box and Blocks standardized clinical tests. Normalized lesion data was analyzed using the MEDx software. ResultsThe magnitude of event-related de-synchronization (ERD) of the high-mu and low-beta bands of the EEG, measured over the affected hemisphere, correlated significantly with (a) residual motor function in the paretic upper limb as measured by standard clinical tests; (b) the magnitude of EMG recorded from the paretic upper limb during wrist extension; and (c) the total hemispheric volume loss (negative correlation). ConclusionThe magnitude of high-mu and low-beta ERD recorded from the lesioned hemisphere of subacute stroke patients correlates with residual motor ability in the paretic upper limb. SignificanceMeasures derived from quantitative EEG analysis may play an important role in neurorehabilitation clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.