Abstract

Considering membranes and membrane components as possible pacemakers of the main processes taking place inside mitochondria, changes in phospholipids or fatty acids could play a central role linking different mechanisms involved in cumulative damage to cell molecules and dysfunction during periods of high stress, such as rapid growth and aging. Changes affecting either lipid class or fatty acid compositions could affect phospholipid and membrane properties and alter mitochondrial function and cell viability. In the present study, mitochondrial oxidative status and mitochondrial membrane phospholipid compositions were analyzed throughout the life-cycle of zebrafish. TBARS content significantly increased in 18-month-old fish while aconitase activity decreased in 24-month-old fish, which have been related with oxidative damage to molecules. Mitochondria-specific superoxide dismutase decreased in 24-month-old animals although this change was not statistically significant. Age affected both mitochondrial phospholipid content and the peroxidation index of most phospholipid classes suggesting that oxidative damage to mitochondrial lipids was occurring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.