Abstract
In recent decades, three important events have likely played a role in changing the water temperature and clarity of the Laurentian Great Lakes: 1) warmer climate, 2) reduced phosphorus loading, and 3) invasion by European Dreissenid mussels. This paper compiled environmental data from government agencies monitoring the middle and lower portions of the Great Lakes basin (lakes Huron, Erie and Ontario) to document changes in aquatic environments between 1968 and 2002. Over this 34-year period, mean annual air temperature increased at an average rate of 0.037 °C/y, resulting in a 1.3 °C increase. Surface water temperature during August has been rising at annual rates of 0.084 °C (Lake Huron) and 0.048 °C (Lake Ontario) resulting in increases of 2.9 °C and 1.6 °C, respectively. In Lake Erie, the trend was also positive, but it was smaller and not significant. Water clarity, measured here by August Secchi depth, increased in all lakes. Secchi depth increased 1.7 m in Lake Huron, 3.1 m in Lake Ontario and 2.4 m in Lake Erie. Prior to the invasion of Dreissenid mussels, increases in Secchi depth were significant ( p < 0.05) in lakes Erie and Ontario, suggesting that phosphorus abatement aided water clarity. After Dreissenid mussel invasion, significant increases in Secchi depth were detected in lakes Ontario and Huron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.