Abstract
Indigenous microorganisms in sediments could degrade polybrominated diphenyl ethers (PBDEs), but how the microbial communities respond to PBDEs was seldom reported. The effect of BDE-153, a common congener in aquatic environments, on the microbial communities in four types of aquatic sediments was evaluated during the 150days' incubation under an anaerobic condition. The intrinsic potential to remove BDE-153 varied significantly among four sediment types, and the removal rates of mangrove, mudflat, marine and freshwater sediments were 0.013, 0.013, 0.011, and 0.009day−1, respectively. The observed microbial species, Simpson, Shannon, and Chao1 indices in all sediments were rather stable and were not changed significantly by BDE-153 amendment. However, BDE-153 amendment altered the microbial community compositions in three saline sediments at the end of the incubation period. Distance-based multivariate multiple regression analysis revealed that salinity, total organic carbon (TOC) and BDE-52, the major debromination product of BDE-153, were the three main factors explaining the variations in microbial community compositions in BDE-treated sediments; whereas salinity, TOC and pH were the main contributing factors in control sediments without BDE-153. The daughter congeners generated during anaerobic debromination process need more attention, especially their effect on the microbial communities in aquatic sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.