Abstract

Methyl mercury (MeHg) concentrations in zooplankton were compared from four experimental reservoirs at the Experimental Lakes Area in northwestern Ontario, Canada, to test the hypothesis that increases in concentrations of MeHg in zooplankton would be proportional to C availability. The experimental reservoirs included three upland reservoirs flooded between 1999 and 2003 that differed in amounts of flooded organic terrestrial C (high, medium, and low C) and an experimental reservoir created over a wetland–peatland complex in 1993. After flooding, MeHg in zooplankton increased from <100 ng·g dry weight–1in inflow source waters to >500 ng·g dry weight–1in all reservoirs. In the first two years of flooding, MeHg in zooplankton was not correlated with amounts of flooded C, but the rates of decline in mean annual concentrations were negatively correlated with the amount of C stored in flooded catchments. Concentrations of MeHg in zooplankton were highly correlated with MeHg concentrations in unfiltered water, with reductions in bioaccumulation associated with increases in dissolved organic C and decreases in pH. Overall, our results suggest that reservoir designs that minimize the amount of flooded terrestrial C should result in shorter periods of elevated MeHg in the food web.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call