Abstract

The activity of sulfate-reducing bacteria (SRB) intensifies the problems associated to corrosion of metals and the solution entails significant economic costs. Although molybdate can be used to control the negative effects of these organisms, the mechanisms triggered in the cells exposed to Mo-excess are poorly understood. In this work, the effects of molybdate ions on the growth and morphology of the SRB Desulfovibrio alaskensis G20 (DaG20) were investigated. In addition, the cellular localization, ion uptake and regulation of protein expression were studied. We found that molybdate concentrations ranging between 50 and 150µM produce a twofold increase in the doubling time with this effect being more significant at 200µM molybdate (five times increase in the doubling time). It was also observed that 500µM molybdate completely inhibits the cellular growth. On the context of protein regulation, we found that several enzymes involved in energy metabolism, cellular division and metal uptake processes were particularly influenced under the conditions tested. An overall description of some of the mechanisms involved in the DaG20 adaptation to molybdate-stress conditions is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.