Abstract

Two specific regions of the future nasal and oral epithelial surfaces of the secondary palatal shelves increase in cell density during shelf reorientation. The relationships of mesenchymal cells to the basal lamina underlying these regions were examined and compared to those of cells underlying adjacent regions which did not change in cell density. CD-1 mouse fetuses were obtained on day 13.5 of gestation. Some palatal shelves were excised immediately and fixed for electron microscopy; other heads were partially dissected and incubated for 4 hr prior to fixation. Although shelf movement is detected only after 6 hr incubation, the shorter time period was selected in order to detect events which precede reorientation. Electron micrographs were taken of the epithelial-mesenchymal interface of nasal and oral regions known to increase in epithelial cell density (active segments) and of nasal and oral regions which did not increase (inactive segments). Several measurements were made in a 500-nm-wide zone delimited on photographic prints. Distinct differences in mesenchymal cell configuration were found between nasal and oral regions. Active and inactive segments of each region also differed. A filamentous layer attached to the undersurface of the lamina densa was observed to vary in thickness and character between regions as well. After 4 hr incubation, differences in mesenchymal cell configuration and ultrastructure of the sublaminar zone were apparent between regions. These results suggest that local epithelial-mesenchymal interactions, possibly mediated by the extracellular matrix, precede shelf reorientation. Whether these changes in mesenchymal cell configuration actually reflect mesenchymal cell activities that are necessary for shelf reorientation remains to be elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.