Abstract

Voltammetry was used to monitor in rats changes in medial prefrontal cortex (PFC) dopamine (DA) levels associated with response-contingent presentation of a condensed milk reward. During two initial training sessions, minor DA signal fluctuations were seen when animals consumed a standard 30 sec (0.2 ml) meal earned on a continuous reinforcement schedule. There was no evidence of experience-dependent changes in these fluctuations. Under delayed reinforcement conditions, lever-presses were followed by DA signal increases that were time-locked to the delay duration, and these were followed by signal decreases when animals eventually received the reward. Such decreases became more pronounced when the standard rate of milk delivery was tripled, but were attenuated when milk delivery was reduced to half the usual rate. Withholding earned milk resulted in signal increases. In contrast, DA signal increases were observed during milk consumption when the standard meal duration was unexpectedly shortened to 15 sec or lengthened to 60 or 90 sec. Orderly changes in DA signal were also observed under partial reinforcement conditions. Unreinforced responses were associated with DA signal decreases, whereas transient increases were seen during the 30 sec meal that followed reinforced responses. These findings indicate that response-contingent reward presentation elicits synchronous changes in PFC DA transmission. They also suggest that the DA input to PFC is activated when rewards are presented under conditions that deviate from those that the animals had come to expect, particularly so when the temporal structure of learned associations is altered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.