Abstract
Experiments are presented that confirm earlier predictions that the mode of supply of reactants to a nonlinear (bio)chemical reaction determines or controls concentrations at steady states far from equilibrium. The oxidation of nicotinamide adenine dinucleotide (NADH) catalyzed by the enzyme horseradish peroxidase with continuous input of oxygen was studied; NAD+ is continuously recycled to NADH through a glucose-6-phosphate dehydrogenase system. A comparison of steady-state concentrations is made with an oscillatory oxygen input and a constant input at the same average oxygen input for both modes. By varying the frequency and amplitude of the perturbation (O2 influx), the following may be changed: the average concentration of NADH; the Gibbs free energy difference delta G of the reactants and products at steady state; the average rate of the reaction; the phase relation between the oscillatory rate and delta G; and the dissipation. These results confirm the possibility of an "alternating current chemistry," of control and optimization of thermodynamic efficiency and dissipation by means of external variation of constraints in classes of nonlinear reactions and biological pumps, and of improvements of the yield in such reactions (heterogeneous catalysis, for example).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.