Abstract

Hydrothermal reactions of the multitopic ligand 1-hydroxy-1-(piperidin-4-yl)methylidenebisphosphonic acid (hpdpH4) with cobalt or nickel sulfates afforded two new isostructural metal phosphonates, M3II(hpdpH)2(H2O)6·4H2O [M = Co (Co-10H2O), Ni (Ni-10H2O)]. Their structures consist of parallel diamond chains of three MO6 octahedra bridged by the PO3C tetrahedra. Six of the seven oxygen atoms of the ligand are involved in coordination; for two ligands that amounts to 12 bonds for 3 MO6 and the remaining six are occupied by terminal water molecules. In addition, four water molecules sit in between the chains providing H-bonds to the formation of a 3D-net. Thermal analyses show identical two-step dehydration processes involving first the departure of six water molecules followed by the remaining four. A detailed study of the ac- and dc-magnetization as a function of temperature, field and frequency reveals associated drastic changes. The virgin form Co-10H2O is a paramagnet while its partial dehydrated form Co-4H2O is an antiferromagnet displaying canting below TN = 4.7 K and the fully dehydrated form Co is a ferrimagnet (TC = 12 K). Ni-10H2O and Ni-4H2O exhibit long-range ordered antiferromagnetism (TN = 2.7 and 4.0 K, respectively) and also become ferrimagnets (TC = 9.4 K) when fully dehydrated to Ni. The dehydrated samples can be fully rehydrated with the complete recovery of both the structures and magnetic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call