Abstract

Fine particulate matter (PM2.5) is associated with respiratory effects, and asthmatic children are especially sensitive. Preliminary evidence suggests that combustion-derived particles play an important role. Our objective was to evaluate effect estimates from different PM2.5 exposure metrics in relation to airway inflammation and lung function among children residing in woodsmoke-impacted areas of Seattle. Nineteen children (ages 6–13 yr) with asthma were monitored during the heating season. We measured 24-h outdoor and personal concentrations of PM2.5 and light-absorbing carbon (LAC). Levoglucosan (LG), a marker of woodsmoke, was also measured outdoors. We partitioned PM2.5 exposure into its ambient-generated (Eag) and nonambient (Ena) components. These exposure metrics were evaluated in relation to daily changes in exhaled nitric oxide (FENO), a marker of airway inflammation, and four lung function measures: midexpiratory flow (MEF), peak expiratory flow (PEF), forced expiratory volume in the first second (FEV1), and forced vital capacity (FVC). Eag, but not Ena, was correlated with combustion markers. Significant associations with respiratory health were seen only among participants not using inhaled corticosteroids. Increases in FENO were associated with personal PM2.5, personal LAC, and Eag but not with ambient PM2.5 or its combustion markers. In contrast, MEF and PEF decrements were associated with ambient PM2.5, its combustion markers, and Eag, but not with personal PM2.5 or personal LAC. FEV1 was associated only with ambient LG. Our results suggest that lung function may be especially sensitive to the combustion-generated component of ambient PM2.5, whereas airway inflammation may be more closely related to some other constituent of the ambient PM2.5 mixture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.