Abstract

The ornithine decarboxylase antizyme inhibitor (AZI) was discovered as a protein that binds to the regulatory protein antizyme and inhibits the ability of antizyme to interact with the enzyme ornithine decarboxylase (ODC). Several studies showed that the AZI protein is important for cell growth in vitro. However, the function of this gene in vivo remained unclear. In our study, we analyzed the transcriptional profiles of livers on the 19th day of pregnancy of Azin1 knock-out mice and wild-type mice using the Agilent oligonucleotide array. Compared to the wild-type mice, in the liver of Azin1 knock-out mice 1812 upregulated genes (fold change > or = 2) and 1466 downregulated genes (fold change < or = 0.5) were showed in the microarray data. Altered genes were then assigned to functional categories and mapped to signaling pathways. These genes have functions such as regulation of the metabolism, transcription and translation, polyamine biosynthesis, embryonic morphogenesis, regulation of cell cycle and proliferation signal transduction cascades, immune response and apoptosis. Real-time PCR was used to confirm the differential expression of some selected genes. Overall, our study provides novel understanding of the biological functions of AZI in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.