Abstract

Manipulation of planting density and choice of variety are effective management components in any cropping system that aims to enhance the balance between environmental resource availability and crop requirements. One-time fertilization at first flower with a medium plant stand under late sowing has not yet been attempted. To fill this knowledge gap, changes in leaf structural (stomatal density, stomatal length, stomata width, stomatal pore perimeter, and leaf thickness), leaf gas exchange, and chlorophyll fluorescence attributes of different cotton varieties were made in order to change the planting densities to improve lint yield under a new planting model. A two-year field evaluation was carried out on cotton varieties—V1 (Zhongmian-16) and V2 (J-4B)—to examine the effect of changing the planting density (D1, low, 3 × 104; D2, moderate, 6 × 104; and D3, dense, 9 × 104) on cotton lint yield, leaf structure, chlorophyll fluorescence, and leaf gas exchange attribute responses. Across these varieties, J-4B had higher lint yield compared with Zhongmian-16 in both years. Plants at high density had depressed leaf structural traits, net photosynthetic rate, stomatal conductance, intercellular CO2 uptake, quenching (qP), actual quantum yield of photosystem II (ΦPSII), and maximum quantum yield of PSII (Fv/Fm) in both years. Crops at moderate density had improved leaf gas exchange traits, stomatal density, number of stomata, pore perimeter, length, and width, as well as increased qP, ΦPSII, and Fv/Fm compared with low- and high-density plants. Improvement in leaf structural and functional traits contributed to 15.9%–10.7% and 12.3%–10.5% more boll m−2, with 20.6%–13.4% and 28.9%–24.1% higher lint yield averaged across both years, respectively, under moderate planting density compared with low and high density. In conclusion, the data underscore the importance of proper agronomic methods for cotton production, and that J-4B and Zhongmian-16 varieties, grown under moderate and lower densities, could be a promising option based on improved lint yield in subtropical regions.

Highlights

  • Cotton (Gossypium hirsutum L.) is a natural white fiber and cash crop that is grown globally [1].The cotton plant is characterized by indeterminate growth habits and shows morphological and physiological adaptation to a wide range of environmental and management practices, including planting density and cultivar

  • The current study has provided new data on the common perception that high planting density significantly decreases leaf structural characteristics, such as stomatal density, length, width, pore perimeter, and leaf thickness, as well as functional traits, which leads to lint yield loss

  • We found that improved leaf functional and structural traits for J-4B under moderate density had a higher lint yield

Read more

Summary

Introduction

Cotton (Gossypium hirsutum L.) is a natural white fiber and cash crop that is grown globally [1]. The cotton plant is characterized by indeterminate growth habits and shows morphological and physiological adaptation to a wide range of environmental and management practices, including planting density and cultivar. An expanding population necessitates global efforts to increase crop production, especially those fulfilling food and fiber needs. Numerous management practices have been introduced for cotton production systems, but lint production per unit area has remained stagnant [2]. High input costs combined with multiple management and material inputs have threatened cotton productivity. An efficient agricultural production system characterized by moderate planting density with one-time fertilization under a short growing season can reduce inputs without yield loss [3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call