Abstract

Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145 kDa—accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.

Highlights

  • IntroductionHuman embryonic stem cells (hESC) are derived from the inner cell mass of blastocyst

  • Human embryonic stem cells are derived from the inner cell mass of blastocyst

  • Spontaneous differentiation of some cells was detected under normal culture conditions and in DMSO-containing media on day 5, the substantial changes were detected in retinoic acid (RA)-treated Human embryonic stem cells (hESC) colony morphology, which were characteristic to differentiating hESC (S1A Fig)

Read more

Summary

Introduction

Human embryonic stem cells (hESC) are derived from the inner cell mass of blastocyst. They have the capacity to self-renew and differentiate into cells of all three embryonic germ layers [1]. Transcription factors OCT4, NANOG and SOX2 are important regulators for hESC to retain their pluripotency and self-renewing characteristics [2]. Both down and up regulation of the expression levels of these transcription factors can induce differentiation of hESC [3,4,5,6]. In monolayer hESC cell cultures, this chemical can induce neuronal [8,9] and endodermal differentiation [9] but can be used to direct hESC towards extraembryonic lineages

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call