Abstract

We have studied how the development of the isthmo-optic nucleus (ION) is affected by electrical activity in the ION's axonal target territory, the contralateral retina. Electrical activity was blocked or reduced in the retina for various periods by tetrodotoxin injected intraocularly in different doses. The effects on the morphology of the retina appear to have been minor. During the ION's period of naturally occurring neuronal death (embryonic days 12 to 17), the injections substantially reduced this neuronal death and disrupted the development of lamination in the contralateral ION; there was also a lesser reduction in neuronal death in the ipsilateral ION. The dose of tetrodotoxin required to affect lamination was lower than that affecting neuronal death. Thus, the effects on neuronal death and on lamination were independent, since either could occur without the other. These effects were mediated by retrograde signals (probably two or more) from the eye; they occurred too early for the alternative anterograde route via the optic tectum (which projects to the ION) to be responsible. After embryonic day 17, the ION's response to intraocular tetrodotoxin changes abruptly from increased survival to total and rapid degeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call