Abstract

Two critical periods of maximum exposure to antigens occur in young mammals, immediately after birth and at weaning, as a result of colonization by commensal bacteria and the ingestion of new diets. At weaning, active immune responses of antibody production against dietary proteins are known to occur, but simultaneously, oral tolerance is acquired for harmless food proteins. However, regulated mechanisms of the immune system at weaning remain to be elucidated although its immune responses may be somewhat similar to those in adulthood. Considering that tolerogenic antigen-presenting cells (APCs) are likely to be a key factor in the acquisition of oral tolerance, in the present study, we examined the changes of dendritic cells (DCs) in the lamina propria (LP) on exposure to food proteins at weaning. C57BL/6 female mice were weaned at the age of 3weeks and orally administered 10mg of ovalbumin (OVA) for ten consecutive days after weaning. The administration led to a decrease in the plasma level of immunoglobulin specific for OVA, suggesting the acquisition of oral tolerance. The uptake of fluorescence-labeled OVA was significantly observed for CD11c(+)LPDCs. When we analyzed the changes of two types of LPDCs, PDCA-1(+) MHC II(+) DCs and CD103(+) MHC II(+) DCs, ten consecutive gavages of OVA marginally, but not significantly, augmented only the frequency of PDCA-1(+) MHC II(+) DCs. Considering that the change of APCs likely appears immediately on the response to antigen intake, we found the statistically significant increase in the frequency of PDCA-1(+) DCs, but not in that of CD103(+) DCs, even after two treatments, indicating PDCA-1(+) DCs to be recruited in the LP within 2days of exposure to food proteins. These results suggest that the behavior of tolerogenic PDCA-1(+) DCs may change at weaning with the removal of the immunoprotective components of maternal milk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.