Abstract

Adsorption of water to a phospholipid (lecithin) and a ceramide were studied by IR microspectroscopy equipped with a humidity control system and quartz crystal microbalance (QCM). The water weight ratios increase up to 12.2 wt% for lecithin and 1.2 wt% for ceramide at RH ~80%, with linear correlations with infrared OH (+NH) band areas. For lecithin, the 1230 cm-1 band (PO2-) and the 1735 cm-1 band (CO) shift to lower wavenumbers, while the 1060 cm-1 band (PO2-, POC) shift to higher wavenumber with RH. Band areas of phosphates (1230 and 1060 cm-1) increase with RH showing positive relations with the band area of bound water. Bound water molecules with shorter H bonds might be bound to these phosphate groups. Band areas of aliphatic CHs are negatively correlated with the increasing adsorption of free water. Free water molecules with longer H bonds might interact loosely with aliphatic chains of lecithin. For ceramide, only the 1045 cm-1 band (CO) shows a small red shift at higher RHs than 60%, indicating adsorption of bound water to CO bonds. Amounts of water molecules adsorbed to ceramide are very limited due to few adsorption of free water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call