Abstract
This work has been conducted to assist theoretical modelling of the different stages of the blue light (BL)-induced phototropic signalling pathway and ion transport activity across plant membranes. Ion fluxes (Ca(2+), H(+), K(+) and Cl(-)) in etiolated oat coleoptiles have been measured continuously before and during unilateral BL exposure. Changes in ion fluxes at the illuminated (light) and shadowed (dark) sides of etiolated oat coleoptiles (Avena sativa) were studied using a non-invasive ion-selective microelectrode technique (MIFE). The bending response was also measured continuously, and correlations between the changes in various ion fluxes and bending response have been investigated. For each ion the difference (Delta) between the magnitudes of flux at the light and dark sides of the coleoptile was calculated. Plants that demonstrated a phototropic bending response also demonstrated Ca(2+) influx into the light side approximately 20 min after the start of BL exposure. This is regarded as part of the perception and transduction stages of the BL-induced signal cascade. The first 10 min of bending were associated with substantial influx of H(+), K(+) and Cl(-) into the light (concave) side of the coleoptiles. The data suggest that Ca(2+) participates in the signalling stage of the BL-induced phototropism, whereas the phototropic bending response is linked to changes in the transport of H(+), K(+) and Cl(-).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.