Abstract
Predator-prey interactions shape ecosystem stability and are influenced by changes in ecosystem productivity. However, because multiple biotic and abiotic drivers shape the trophic responses of predators to productivity, we often observe patterns, but not mechanisms, by which productivity drives food web structure. One way to capture mechanisms shaping trophic responses is to quantify trophic interactions among multiple trophic groups and by using complementary metrics of trophic ecology. In this study, we combine two diet-tracing methods: diet DNA and stable isotopes, for two trophic groups (top predators and intermediate predators) in both low- and high-productivity habitats to elucidate where in the food chain trophic structure shifts in response to changes in underlying ecosystem productivity. We demonstrate that while top predators show increases in isotopic trophic position (<i>δ</i><sup>15</sup>N) with productivity, neither their isotopic niche size nor their DNA diet composition changes. Conversely, intermediate predators show clear turnover in DNA diet composition towards a more predatory prey base in high-productivity habitats. Taking this multi-trophic approach highlights how predator identity shapes responses in predator-prey interactions across environments with different underlying productivity, building predictive power for understanding the outcomes of ongoing anthropogenic change.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.