Abstract

The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O’Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.

Highlights

  • Precise tuning and homeostatic regulation of intracellular Na+ levels, [Na+]i, are known to be essential elements of a number of very important regulatory physiological processes in mammalian heart cells

  • INa-L was increased 2-fold to approximate the changes in INa-L utilized in a number of different experimental settings that have evaluated repolarization variability caused by changes in INa-L [3,23]

  • Note that in response under steady-state conditions: (i) the action potential lengthens substantially (A), (ii) [Na+]i increases by only approx. 0.1 mM (D); and (iii) there are small changes in the Na+/K+ pump current (C), as well as the L-type Ca2+ current ICa-L (E) and the Na+/Ca2+ exchanger current, INCX (F)

Read more

Summary

Introduction

Precise tuning and homeostatic regulation of intracellular Na+ levels, [Na+]i, are known to be essential elements of a number of very important regulatory physiological processes in mammalian heart cells (cf. [1,2,3]). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call