Abstract

1. In this report we compare changes in inhibitory neurotransmission within the CA1 region and the dentate gyrus (DG) in a model of chronic temporal lobe epilepsy (TLE). Extracellular and intracellular recordings were obtained in combined hippocampal-parahippocampal slices > or = 1 mo after a period of self-sustaining limbic status epilepticus (SSLSE) induced by continuous hippocampal stimulation. 2. Polysynaptic inhibitory postsynaptic potentials (IPSPs) were induced by positioning electrodes to activate specific afferent pathways and evoking responses in the absence of glutamate receptor antagonists [D(-)-2-amino-5-phosphonovaleric acid (APV) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)]. Polysynaptic IPSPs were evoked in CA1 pyramidal cells from electrodes positioned in stratum radiatum and in stratum lacunosum/moleculare. Polysynaptic IPSPs were evoked in DG granule cells from electrodes positioned over the perforant path located in the subiculum. Monosynaptic IPSPs were induced by positioning electrodes within 200 microns of the intracellular recording electrode (near site stimulation) and stimulating in the presence of APV and CNQX to block ionotropic glutamate receptors. Monosynaptic IPSPs were evoked in CA1 pyramidal cells with electrodes positioned in the stratum lacunosum/moleculare and stratum pyramidale. Monosynaptic IPSPs were evoked in DG granule cells with electrodes positioned in the stratum moleculare. 3. Population spike (PS) amplitudes were employed to assure that a full range of stimulus strengths, from subthreshold for action potentials to an intensity giving maximal-amplitude PSs, was used to elicit polysynaptic IPSPs in CA1 pyramidal cells in both post-SSLSE and control slices. In control tissue, polysynaptic IPSPs were biphasic, composed of early and late events. In post-SSLSE tissue, polysynaptic IPSPs were markedly diminished. The diminution of polysynaptic IPSPs was detected at all levels of stimulus intensity. Both early IPSPs [mediated by gamma-aminobutyric acid-A (GABAA) receptors] and late IPSPs (mediated by GABAB receptors) were diminished. Polysynaptic IPSPs were diminished with both stratum radiatum and with stratum lacunosum/moleculare stimulation. 4. Reversal potentials for either polysynaptic early or polysynaptic late IPSPs evoked in CA1 pyramidal cells by stratum radiatum stimulation were not different in slices from post-SSLSE animals as compared with control animals. Likewise, reversal potentials for either polysynaptic early or polysynaptic late IPSPs evoked by stratum lacunosum/moleculare stimulation did not differ in the two groups. These findings excluded changes in driving force as an explanation for the diminished amplitude of IPSPs in CA1 pyramidal cells in the post-SSLSE model.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.