Abstract
We determined the density of defect states of poly-Si/SiOx/c-Si junctions featuring a wet chemical interfacial oxide from lifetime measurements using the MarcoPOLO model to calculate recombination and contact resistance in poly-Si/SiOx/c-Si-junctions. In samples that did not receive any hydrogen treatment, the Dit,cSi is about 2 × 1012 cm−2 eV⁻1 before firing and rises to 3–7 × 1012 cm⁻2 eV⁻1 during firing at measured peak temperatures between 620 °C and 863 °C. To address the question of why AlOx/SiNy stacks in contrast to pure SiNy layers for hydrogenation during firing provides better passivation quality, we have measured the hydrogen concentrations at the poly-Si/SiOx/c-Si interface as a function of AlOx layer thickness and compared these to J0 and calculated Dit,c-Si values. We observe an increase of the hydrogen concentration at the SiOx/c-Si interface upon firing as a function of the firing temperature that exceeds the defect concentrations at the interface several times. However, the AlOx layer thickness appears to cause an increase in hydrogen concentration at the SiOx/c-Si interface in these samples rather than exhibiting a hydrogen blocking property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.