Abstract

Homologous (granulosa cell–granulosa cell) gap junction (GJ) contacts increase in ovarian follicles of Atlantic croaker ( Micropogonias undulatus) during the early (first) stage of maturation, but their profile during the second stage [i.e., during maturation-inducing hormone (MIH)-mediated meiotic resumption] is unknown. The profile of homologous GJ contacts during the second stage of maturation in croaker follicles was examined in this study and compared to that of heterologous (granulosa cell–oocyte) GJ, for which changes have been previously documented. Follicles were incubated with human chorionic gonadotropin to induce maturational competence (first stage), and then with MIH to induce meiotic resumption. The follicles were collected for examination immediately before and after different durations of MIH exposure until the oocyte had reached the stage of germinal vesicle breakdown (GVBD; index of meiotic resumption). Ultrathin sections were observed by transmission electron microscopy, and homologous and heterologous GJ contacts were quantified along a 100-μm segment of granulosa cell–zona radiata complex per follicle (three follicles/time/fish, n=3 fish). Relatively high numbers of both types of GJ were observed before and after the first few hours of MIH exposure (up to the stage of oil droplet coalescence). GJ numbers declined during partial yolk globule coalescence (at or near GVBD) and were just under 50% of starting values after the completion of GVBD ( P<0.05). These results confirm earlier observations that GVBD temporally correlates with declining heterologous GJ contacts, and for the first time in teleosts show that there is a parallel decline in homologous GJ. The significance of the changes in homologous and heterologous GJ is uncertain and deserves further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.