Abstract

Red blood cells (RBCs) undergo metabolic, oxidative, and physiological changes during storage, collectively described as the "storage lesion." The impact of storage on oxygen homeostasis, following transfusion, is not fully understood. We show that RBC storage induces changes in oxygen binding that were linked to changes in oxygen sensing (hypoxia-inducible factor, HIF-1α) mechanisms and mitochondrial respiration in human pulmonary arterial endothelial cells (HPAECs). A decrease in oxygen affinity (P50) to approximately 20 from 30mmHg was seen at the first week but remained unchanged for up to 42 days. This led to the suppression of HIF-1α in the first 3weeks due to limited oxygen supplies by RBCs. Furthermore, membrane oxidative damage, band 3 alterations, and subsequent microparticle (MP) formation were also noted. Mass spectrometric analysis revealed the upregulation of transitional endoplasmic reticulum ATPase, essential for clearing ROS-damaged membrane proteins and the protein DDI1 homolog, a proteasomal shuttle chaperone. Band 3 complex proteins and superoxide dismutase were among the downregulated proteins. Mitochondrial oxygen consumption rates measured in HPAECs incubated with RBC-derived MPs (14-day and 42-day) showed a rise in maximal respiration. Intervention strategies that target intracellular hemoglobin (Hb)'s redox transitions and membrane changes may lead to the reestablishment of oxygen homeostasis in old RBCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.