Abstract
Most pandalid shrimps show protandric hermaphroditism, and male sexual differentiation is considered to be controlled by the androgenic gland. In the present study, we examined the histology of gonadal development during the male phase and sex change and the involvement of the androgenic gland in regulating male reproduction in laboratory-maintained Pandalus hypsinotus. Juvenile shrimps developed testicular tissues in the peripheral part of gonads during the age of 16–31 months and produced spermatozoa between 34 and 36 months. After reaching sexual maturity, male shrimps exhibited seasonal testicular development: active production of spermatozoa (February–May), disappearance of spermatozoa (spent, April–June), increase of spermatocytes (May–November), appearance of spermatids and spermatozoa in the gonads (November–February). The androgenic gland cells became larger and the rough endoplasmic reticulum in the cytoplasm developed at male sexual maturity. The cell structure shows that the androgenic gland hormone is a peptide. Furthermore, bilateral eyestalk ablation on immature male shrimps induced hypertrophy of the androgenic gland and acceleration of male sexual maturation. These results indicate the involvement of androgenic gland hormone and some eyestalk factor in regulating male sexual maturation. Over a 1-year laboratory-rearing period, some male shrimps (16.7%) changed sex. In transitional shrimps, testicular tissues in the gonads and androgenic glands degenerated; on the other hand, oocytes started yolk protein accumulation and hemolymph vitellogenin levels became high. These results suggest that androgenic gland degeneration is a trigger for sex change and that the vitellogenin level is a useful marker for sex change.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.