Abstract

The growth of hepatoma cells can be inhibited by treatment with TGFbeta1 or with exogenous reducing agents. To gain information on the molecular mechanisms underlying growth arrest, we visualized and compared gene expression profiles of proliferating versus non proliferating HepG2 cells by computer-assisted gene fishing, an improved technique of RNA fingerprinting that allows the selective amplification of coding regions within transcripts. While many transcripts are selectively regulated by either treatment, a set of bands appear to be coordinately regulated by 2ME and TGFbeta1, suggesting their possible involvement in the mechanisms of growth arrest. Display tags corresponding to 18 differentially expressed genes were cloned and, in most cases, identified as known genes or, more frequently, as their homospecific/cross-specific homologues. A novel member of the kinesin superfamily was identified amongst the genes induced by both 2ME and TGFbeta1. This gene, KIF3C, is upregulated in several cell lines undergoing growth arrest. Taken together, our findings show that computer-assisted gene fishing is a powerful tool for the identification and cloning of genes involved in the control of cell proliferation and indicate that extracellular reducing agents can regulate cell growth through modulation of gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.