Abstract

Water permeation through phospholipid/cholesterol bilayers is the key to understanding tension-induced rupture of biological cell membranes. We performed molecular dynamics simulations of stretched phospholipid/cholesterol bilayers to investigate changes in the free energy profile of water molecules across the bilayer and the lipid structure responsible for water permeation. We modeled stretching of the bilayer by applying areal strain. In stretched phospholipid/cholesterol bilayers, the hydrophobic tail of the phospholipids became disordered and the free energy barrier to water permeation decreased. Upon exceeding the critical areal strain, a phase transition to an interdigitated gel phase occurred before rupture, and the hydrophobic tail ordering as well as the free energy barrier were restored. In pure phospholipid bilayers, we did not observe such recoveries. These transient recoveries in the phospholipid/cholesterol bilayer suppressed water permeation and membrane rupture, followed by an increase in the critical areal strain at which the bilayer ruptured. This result agrees with experimental results and provides a reasonable molecular mechanism for the toughness of phospholipid/cholesterol bilayers under tension. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call