Abstract

The end-Permian mass extinction event is traceable across several non-marine basins in Australia. In the Sydney Basin, the lithological succession is characterized by a change from coal seams to mudstones and sandstones, recording a major environmental change following the disappearance of the Permian vegetation. A few millimeter-thick iron-rich ‘rusty’ layer occurs between the uppermost Permian coal seam and the mudstone, a layer that extends laterally across the basin and which has also been documented from coeval successions in Antarctica. This layer is overlain by the <1.5-m-thick Frazer Beach Member, whose basal 10-cm-thick microbreccia bed comprises 99% kaolinite and quartz, and is dated as 252.10 ± 0.06 Ma. The Frazer Beach Member corresponds to the so-called end-Permian ‘Dead Zone’ lacking fossil pollen and leaves. This distinctive member was deposited directly following the extinction of the Permian peat-forming forests.Here we identify, through X-ray absorption spectroscopy, a drastic redox shift across the extinction interval with increasing amount of reduced Fe-species followed by highly oxidized Fe-species, most resembling Fe(III) complexed with organic matter. Values subsequently normalise in younger samples through the ‘Dead Zone’, attaining only slightly higher redox-levels than before the event. The organically complexed Fe-species in the event bed is consistent with the standard Suwannee River fulvic acid, an acid Fe-complex with iron bound to organic matter, whereas the samples above and below the extinction layer yield spectra predominantly resembling magnetite (Fe3O4) mineral phase. We consider that the iron redox fluctuation marking the extinction interval is related to significant environmental changes with accumulation of organic matter following the mass extinction. The highly reduced iron in the extinction layer may relate to methane release from bacterial degradation, or emissions from clathrates. The presence of fulvic acid in the distinct iron-rich extinction layer indicates that an abrupt onset of the process of degradation of plant matter, lipids and calcium hydroxide (CaOH) took place, resulting in this ‘Death layer’. This was followed by millions of years of erosive conditions before new, complex vegetation could establish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call