Abstract

In order to elucidate the roles of metal-independent animal lectins, we systematically investigated changes in expression of 2 kinds of beta-galactoside-binding isolectins (MW 14 and 16 kDa) in the dermis of chick embryonic tarsometatarsal skin during the course of development. These lectins were immunohistochemically located at different stages of development both in ovo and in vitro by light and electron microscopy. Light-microscopic observation showed that while positive staining for the 14-kDa lectin was weak at days 8 and 10 it became intense after day 13. In contrast, staining for the 16-kDa lectin was intense at days 8, 10, and 13, but it became weak after day 17 when keratinization of the epidermis was completed. Immuno-electron-microscopic observation revealed that both the 14 and 16-kDa lectins were located on the basement membrane, in the extracellular matrix, and in both the cytoplasm and the nucleus of dermal fibroblasts. Distribution of the 2 isolectins was also examined in cultured skin explants in vitro. The results were almost the same as those obtained in ovo when the skin explant was keratinized in the presence of hydrocortisone. However, in the skin explant where keratinization was prevented and mucous metaplasia was induced by the addition of vitamin A, the distribution of the 14-kDa lectin in the epidermis was significantly affected. These results indicate that (1) the expression of the 2 isolectins is differently regulated in both the dermis and epidermis, (2) the 16-kDa lectin is involved in the early stage of the formation of the dermis and the basement membrane and is replaced by the 14-kDa lectin as keratinization of the epidermis occurs, and (3) the expression of the 2 isolectins in the dermis is not significantly affected by the induction of mucous metaplasia, in contrast to their drastic changes in the epidermis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.