Abstract

Bladder cystopathy and autonomic dysfunction are common complications of diabetes, and have been associated with changes in ganglionic transmission and some measures of neuronal excitability in male mice. To determine whether type II diabetes also impacts excitability of ganglionic neurons in females, we investigated neuronal excitability and firing properties, as well as underlying ion channel expression, in major pelvic ganglion (MPG) neurons in control, 10-week, and 21-week Leprdb/db mice. Type II diabetes in Leprdb/db animals caused a non-linear change in excitability and firing properties of MPG neurons. At 10 weeks, cells exhibited increased excitability as demonstrated by an increased likelihood of firing multiple spikes upon depolarization, decreased rebound spike latency, and overall narrower action potential half-widths as a result of increased depolarization and repolarization slopes. Conversely, at 21 weeks MPG neurons of Leprdb/db mice reversed these changes, with spiking patterns and action-potential properties largely returning to control levels. These changes are associated with numerous time-specific changes in calcium, sodium, and potassium channel subunit mRNA levels. However, Principal Components Analysis of channel expression patterns revealed that rectification of excitability is not simply a return to control levels, but rather a distinct ion channel expression profile in 21-week Leprdb/db neurons. These data indicate that type II diabetes can impact the excitability of post-ganglionic, autonomic neurons of female mice, and suggest that the non-linear progression of these properties with diabetes may be the result of compensatory changes in channel expression that act to rectify disrupted firing patterns of Leprdb/db MPG neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call